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1. Introduction 
 
Hamiltonian mechanics is geometry in phase space. It deals with an even dimensional 
manifold, a ‘phase space’, a symplectic structure and a function which is referred to as 
the Hamiltonian. Using such an approach, a formulation of mechanics can be obtained 
which is invariant under group of symplectic diffeomorphisms. When formulated with 
differential geometric concepts, many developments in mechanics can be simplified and 
understood properly. Also many abstract ideas of geometry arose in the study of 
mechanics. E.g. the concept of cotangent bundles. The Hamiltonian point of view allows 
us to solve completely a series of mechanical problems which do not yield solutions by 
other techniques. 
 
 
 
 
 
 
 
 
 
 



2. Mathematical Definitions 
 
2.1 Topological Spaces, Charts and Manifolds 
 

• A topological space denoted by S has the following properties: 
 

It has a collection of subsets, denoted by T. 
Both the null set and S are in T. 
Union of finite number of sets in T, belongs to T. 
Intersection of finite number of sets in T, belongs to T. 

 
• Any charts defined on a topological space S consists of an open set U, together 

with one-one mapping  : ( ) nU Uϕ ϕ→ ⊂ R
 

• A real n dimensional manifold, M is defined as a space with finite or countable 
collection of charts such that every point belonging to this space is represented in 
at least one chart. 

 
An N-dimensional manifold is a space which is like Rn locally. 

 
Example: The 2-sphere S = {x Є R3 | ||x||2 = 1} is R2 locally. 
 
2.2 Tangent Spaces and tangent bundles 
 

• A tangent vector XP at a point P on a manifold M is an ordered pair (X, P) both of 
which are n-tuples. X may be regarded as an ordinary vector and P the position 
vector of the foot of X. 

• The set of all possible tangent vectors at a point P on a manifold M is known as 
the tangent space at P. ( denoted by TPM ) 

• On the manifold M, the collection of all tangent vectors XP from points P in M is 
referred to as the tangent bundle TM. 

 
On similar lines, cotangent vectors/spaces may be defined as dual vectors/spaces of the 
above. A dual vector being a linear functional that maps every vector to a member of R. 
 
The notation for cotangent to TPM being TP*M. 
 
2.4 Exterior Forms 
 

• A 1-form is a linear function : nR Rω → . 
1 1 2 2 1 1 2 2

1 2

1 2

( ) ( )
,

, n

R

R

( )ω λξ λ ξ λω ξ λ ω ξ
λ λ

ξ ξ

+ = +
∈

∈

 

 
 



• An exterior k-form is a function of k vectors which is k-linear and antisymmetric. 
' '
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• The exterior product 1 ^ 2ω ω  on pair of vectors 1 2^ nRξ ξ ∈ is the oriented area of 
the image of the parallelogram with the sides 1( )ω ξ  and 2( )ω ξ . 

1 2^ω ω 1 2( , )ξ ξ = 1 1 2 2 1 2 2 1( ) ( ) ( ) ( )ω ξ ω ξ ω ξ ω ξ−  
 
2.5 Differential Forms 
 

• A differential 1-form is a map from tangent bundle TM to R. 
:
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            Example: Let (U,φ) be a local chart of M, φ = (x¹,…, nx ). Every differential 1-

form ω on U can be written uniquely as  
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• A differential 2-form is a bilinear, antisymmetric map from TM×TM to R. 
( , )x y Rω ∈  

       This can be expressed uniquely as   ( ) i j
i j

a x dx dxω
≠
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2.6 Symplectic Structures 
 
• A symplectic structure on 2n dimensional manifold, M is a closed, nondegenerate 

differential 2-form on M such that  
dω 2 =0 

20 : ( , ) 0ξ η ω ξ η∀ ≠ ∃ ≠  
Example: In R2, 2ω = ∑dp^dq. 
 
 
 
2.7 Lie Groups and Algebra 
 
A Lie group is a group G which is a differentiable manifold such that group operations 
and inverse operations are differentiable.  
 
A Lie algebra is formed by considering infinitesimal tangent space at the identity of lie 
group G. It follows the Jacobi identity. 
 

 
 
 
 



3. Lagrangian Mechanics 
 
Consider a differentiable manifold M and its tangent bundle TM, Lagrangian is defined 
as a differentiable map . A map :L TM R→ : R Mγ → is a motion in Lagrangian system 
and L is a Lagrangian function if  

 
( ) ( )L dtγ γΦ = ∫  

 
The most generalized formulation of a mechanical system is through the principle of least 
action or Hamilton’s principle. This postulates the involvement of a function L. The 
motion of the system is described by the particular γ for which  
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is minimum. The integral S is refereed to as the ‘action’. 
 
The evolution of the local coordinates q = (q1…qn) of a point γ(t) under motion of 
Lagrangian motion on manifold M satisfies the Lagrange-Euler Equation 

0
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dt q q
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The Lagrangian for a system of particles with positions (r1, r2 r3 ……..rn) is given by 
2
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Upon application of a Legendre transformation to the Lagrangian, the resultant so 
obtained is called the Hamiltonian. 
 
4. Hamiltonian Equations 
 
The Legendre Transform takes a function  defined over tangent bundle to a 
function 

:L TM R→
: *H T M R→  on a cotangent bundle. The Lagrangian can be represented in 

terms of its dependencies as .When a Legendre transformation is used to 
change variables from the derivatives of co-ordinates  to the momenta

( , , )i iL q q t

iq ip ; the resulting 
function is called the Hamiltonian. 
 

( , , ) ( , , )i i i i i i
i

H p q t q p L q q t= −∑  

 
The system of Lagrange’s equations is equivalent to 2n first order equations 
 

,dH dHp q
dq dq
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On a symplectic manifold (M, ω²), Hamiltonian function H is a differentiable map 
:H M R→  

 
 
5. Mathematical Model for a Mechanical System 
 

• A configuration space M = MN is a differentiable manifold of dimension N. 
Physically N is the degrees of freedom of the system. 

 
• A symplectic structure on the phase space TM, tangent bundle of M. 

 
• A hamiltonian structure on the phase space T*M, cotangent bundle of M. 

 
• The Kinetic energy is a differentiable function T on TM, such that 

 
T: TM , T (v) = ½R→ ,v v〈 〉 , v TM∈  

 

• A force field is given by a 1-form 
1

N
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6. Hamiltonian Mechanics: 
  

6.1 Hamiltonian Vector Fields: 
 
To each vectorξ , tangent to a symplectic manifold (M2n, ω 2) at a point x, we 
associate a 1-form 1

ξω  on  by xΤΜ
1
ξω (η) = ω 2(η, ξ )  Xη∀ ∈ΤΜ    (1) 

 
Consider an isomorphism I:  such that I preserves symplectic 
structure.  

* XT M XTM→

If H is a function on a symplectic manifold M2n, dH is a differential 1-form on M, and 
at every point there is a tangent vector to M associated with it, defined above(1). H is 
known as Hamiltonian function and I dH is known as a hamiltonian vector field. 
 
 
 6.2 Hamiltonian phase flows:  
 
Consider H: M2n a hamiltonian function on a symplectic manifold MR→ 2n. 
Assuming that field I dH corresponding to H gives group of diffeomorphisms 

,then 2:t ng Μ →Μ2n

td g x IdH
dx

=   At t = 0 

                  Then  is called the Hamiltonian phase flow. tg



 
 
6.3 Law of conservation of energy 
The function H is a first integral of the hamiltonian phase flow with hamiltonian 
function H. 
 
Consider the derivative of H in the direction of vector η is equal to the value of dH on 
η . But η  = I dH from the definition. 
                   then eq.(1) yields dH(η ) = ω 2(η , IdH) = ω 2(η ,η ) = 0 
                   This shows that H is a first integral of hamiltonian phase flow. 
 
 
6.4 Poisson Brackets: 
                    Consider a function f(p,q,t), then its total time derivative is given by  

( ' 'k k
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                     Poisson bracket of the quantities H and f is given by  

[H,f] = ( )
k k k k k

H f H f
p q q p
∂ ∂ ∂ ∂

−
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                      The functions of the dynamical variables which remain constant during 
the motion of the system are known as integrals of the motion. 
 
6.5 Definition of Poisson bracket from differential geometric point of view:  
The poisson bracket of the functions F and H given on a symplectic manifold is the 
derivative of the function F in the direction of the phase flow with hamiltonian 
function H. 

[H, F](x) = ( ( ))t
H

d F g x
dt

   at t = 0 

 
The Jacobi Identity: The poisson bracket of three functions f, g and h satisfies the 
Jacobi identity:  

[f, [g, h]] + [g, [h, f]] + [h, [f, g]] = 0 
 

Example: Consider the angular momentum of a particle M = r × p,  
                 [ , ] = - , [XΜ YΜ zΜ YΜ , ZΜ ] = - XΜ , 
                 [ ZΜ , ] = -  XΜ YΜ
 
Consider B and C the hamiltonian fields with hamiltonian functions B and C. Then  
[B, C] vector field is hamiltonian and its Hamiltonian function is [B, C]. 
 
 
 



6.6 Lie Algebra of Hamiltonian fields:  
           
The hamiltonian fields form subalgebra of the Lie algebra of all vector fields. 
 
The first integrals of a hamiltonian phase flow form a subalgebra of the Lie algebra of 
all functions. The Lie algebra of hamiltonian functions can be mapped onto the Lie 
algebra of hamiltonian vector fields. 

 
      6.7 Canonical Transformation 
 

A canonical transformation on a Hamiltonian system is a change of co-ordinates that 
while not necessarily preserving the original form of the Hamiltonian, maintains the 
relations of canonical co-ordinates: 

,H Hq p
p q

∂ ∂
= = −
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(Hamilton’s equations) 
 

The conditions that on applying a general transformation of co-ordinates, 
 , the Hamilton equations retain their form are derived from 

substituting the transformed co-ordinates and comparing with the original : 
( , , ) ( , , )q p t q p t′ ′→
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Time dependence of the co-ordinates can be incorporated into the Hamiltonian 
formalism by means of using time a canonical transformation such as: 
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The Hamiltonian acquires the form 
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More general definition of canonical transformations: 
Consider a differentiable mapping of the phase space R2n (p, q) to R2n. 
The mapping g is said to be a canonical transformation, if it preserves 2-form 

2
i i

dp dqω = Λ∑  
 

6.8 Geometric interpretation of the Hamilton-Jacobi equation 



 1) Conservative systems: Hamiltonian : *H T M R→  and the real valued 
“action” . :S M R→
                           , : *dS M T M→ ( , )xx x d S→  
                          The composite of these maps gives Hamilton-Jacobi equation on M, 
H dS = E, above equation implies  

                           1 1( ,...., , ,....., )n n

S SH q q E
q q
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2) Non-conservative systems: If H is the hamiltonian of a dynamical system, then 
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